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1. Introduction

A wealth of structural data for molecular compounds has been

described by chemists with their main interest focused at the

structure, e.g. the connectivity and geometry of individual

molecules. All relevant information is stored in the Cambridge

Structural Database (CSD; Allen, 2002), which is now routi-

nely used by chemists to extract information on molecular

structures. Only rarely is it used to extract information on the

type of packing of the molecular items within the solid state.

With interest in molecular chemistry steadily growing,

chemists are increasingly aware of the importance of the type

of arrangement of the molecular building blocks within a

crystal. The logical principles for analysing the type of

arrangement of molecules within a crystal were laid down

decades ago by Kitaigorodskii (1945). His fundamental ideas

are still the basis of any attempt to rationalize the patterns of

molecular packing.

There are two lines of research originating from his seminal

work: one relies upon modelling the patterns by force-field

methods (Kitaigorodskii, 1970; Pertsin & Kitaigorodskii, 1987;

Lommerse et al., 2000; Motherwell et al., 2002). The other one

tries to make intelligent use of data mining procedures with

the aim of extracting some of the rules which govern packing

and which are hidden in the data (Kuleshova & Antipin, 1999;

Motherwell, 1999, 2001; Brock, 1996). This approach had

already been used by Kitaigorodskii (1961), who, to give just

one example, inspired by the fact that so many crystals belong

to the space group P21=c, was able to correlate space-group

symmetry with characteristics of the shape of real molecules

(Kitaigorodskii, 1979). Henceforth, crystal symmetry is a

commonly used tool in the analysis of molecular packing

(Brock & Dunitz, 1994; Cole et al., 2001; Yao et al., 2002;

Pidcock et al., 2003). An overview over the systematic study of

crystal packing is given by Brock (1999).

A different approach involves analysing the polyhedra

(Wells, 1983) formed by the centres of molecules within a

crystal. A search for specific polyhedra, e.g. octahedra, acts as

a filter to extract patterns with that specific polyhedral

arrangement of molecular structures. The connectivity

between individual polyhedra may then by analysed for the

specific idealized type of pattern, e.g. cubic close-packed



(f.c.c.), hexagonal close-packed (h.c.p.) or body-centred cubic

(b.c.c.); see Reichling & Huttner (2000). An attempt can then

be made to correlate the observed specific idealized patterns

of packing with the shape of the molecules. A very reduced

and approximate description of the shape of a molecule is its

ellipsoid of second moments (ellipsoid of moments of inertia).

Not unexpectedly, using this shape descriptor as a classifier, it

is found that molecules, the shapes of which are described by

ellipsoids with rotation symmetry, tend to be packed in one of

the idealized close-packing arrangements (Reichling &

Huttner, 2000).

The basic idea of this approach is at the foundation of the

present work. However, while the latter work made use of

pattern analysis by neural networks, the present work

concentrates on the search for layers, built from centred

hexagons. Structures, the packing patterns of which may be

described by parallel stacking of such layers, are extracted by

this type of filter. The type of sequence of such layers relative

to the normal of the layer planes serves as an additional

classifier. A correlation between packing and shape is obvious

for some shapes.

An algorithm has been developed which automatically

screens crystal structures with respect to packing. A program

for performing this analysis and allowing visualization of the

results is available for download (Braun & Huttner, 2004). The

present article describes the application of the algorithm to

approximately 110 000 structures retrieved from the CSD.

2. Methodology

2.1. Dataset

The data were taken from the CSD Version 5.24 with

supplements through July 2003. From a total of 296 427 entries

a subset of 112 993 served as the basis of the analysis. This

subset resulted after discarding structures with the following

features:

(i) a conventional R factor greater than 0.10;

(ii) no three-dimensional coordinates;

(iii) disorder;

(iv) polymeric;

(v) inconsistent information;

(vi) more than one residue per asymmetric unit.1

The last criterion automatically excludes ionic structures.

The remaining dataset consisted of 113 038 structures. From

this total, a further 45 structures had to be excluded since the

quantum chemical program used for calculating the molecular

volume (see x2.7) could not automatically deal with some of

the atoms present in the structure. The analysis is hence based

on 112 993 structures.

2.2. Search for centred hexagons

The packing of the centres of the molecules was chosen as

the basis of the packing analysis. The centre was calculated as

the centre of geometry of all the atoms within the molecular

structure (Motherwell, 1997). Starting from one selected

molecule within the cell, centres of up to 24 nearest neigh-

bours inside a sphere were determined.

All possible combinations of seven points of this ensemble

were checked to determine if they form a hexagon that is

centered, reasonably regular and approximately planar. The

check included the following criteria (see Fig. 1):

(i) coplanarity as determined from the eigenvalues � of the

matrix of second moments;

(ii) the relative standard deviation �d of the 12 distances, i.e.

the six radial (a, Fig. 1) and the six tangential (b, Fig. 1)

distances;

(iii) the relative standard deviation �’ of the six central

angles from the ideal value of 60�;

(iv) the relative standard deviation �� of the six inner angles

between adjacent edges from the ideal value of 120�;

(v) the distance dmin of the central point from the geome-

trical centre of the seven-point arrangement, normalized by

the next shortest distance of a point to the geometrical centre

(this kind of normalization is more stringent than normal-

ization by the average distance).

The limits given in Table 1 were found to be appropriate.

As an additional restriction, a combination of all five of the

above-named criteria in the form of a weighted sum,

! ¼ 4�þ �d þ �’ þ 4�� þ dmin, was used. This weighting

scheme puts additional weight on planarity (�). It excludes

cases with, for instance, just one edge of a planar centred

hexagon being displaced from the position it would occupy in

a regular hexagon. In this case �d might still be small, while ��
reflects this irregularity.
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Figure 1
Illustration and definition of some of the symbols pertaining to the data
analysed in the search for centred hexagons.

Table 1
Upper limits for the search of hexagons.

Criterion � �d �� �’ dmin !

Limit 0.15 0.075 0.15 0.15 0.15 1

1 The term ‘residue’ is defined as a set of atoms where each atom within the set
may be reached from any other atom within the set by walking along chemical
bonds.



2.3. Search for layers

Once a centred hexagon is found, the next step is to show

that this hexagon is part of a planar layer. Let us define q as

the average of the six radial (a, Fig. 1) and the six tangential (b,

Fig. 1) distances. Then, within a radius of 4q around the centre

of the selected hexagon, all centres which are coplanar with it

are chosen. Coplanarity with the central hexagon is checked

by calculating the deviation in the direction of the normal of

the plane. The normal itself is recalculated for the growing

ensemble of points after the addition of every ten newly added

points. The maximum distance allowed for the deviation of an

individual point from the plane is taken as 30% of the shortest

distance of the central point to any point not belonging to the

layer (i.e. to the closest neighbour of an adjacent layer; the

30% criterion was found to be adequate as it guarantees an

appropriate tolerance, especially for short interlayer

distances). Points above and below the selected layer were

sorted in their relevant layers so as to cover at least a total of

five parallel layers and a mean of 20 over the whole dataset.

The number of parallel layers covered depends on the ratio of

the interlayer distance to the mean distance within the layer

(q, see above).

2.4. Test for hexagonal tiling of layers

Within the central and the two adjacent layers, a test for an

extended hexagonal pattern was performed. The 12 points

around the selected central point as shown in Fig. 2 were

chosen as the centres of the hexagons. An analogous proce-

dure was applied to the adjacent layers above and below the

basal hexagon checking 13 hexagons in each layer. If all the

hexagons were found to be congruent, the pattern was ranked

as one built of layers of centred hexagons.

2.5. Stacking sequence

In close-packed structures, the sequence of close-packed

hexagonal layers, e.g. AB or ABC, is an important discrimi-

nator. In general, if the structure is considered to be built from

layers, the pattern of shifts of these layers determines the kind

of repetitive pattern in the dimension perpendicular to the

plane. In order to quantify this shift, the centre of the central

hexagon in the basal layer is taken as the origin of an axis

perpendicular to the layer plane. The displacements of

consecutive layers are measured relative to this axis.

To this end, the three centres which are closest to this axis in

the adjacent layer are determined (Fig. 3). Since the centred

hexagons are not necessarily fully symmetric, one of the three

centres just determined has to be selected as the most

appropriate base to measure the shift. This selection is made

using the following criteria:

(i) The six-membered cycle around a chosen centre should

be related to the basic six-membered cycle by translation

alone.

(ii) If this condition is not met by any of the three six-

membered cycles defined by the three centres chosen, the one

which is related to the basic six-membered cycle by translation

and a rotation by 180� around the plane normal should be

selected.

(iii) If neither condition (i) nor condition (ii) are met, no

stacking analysis should be performed.

If more than one of the three centres meets condition (i) or

(ii), a situation schematically shown in Fig. 3 may result. Of the

possible alternatives, the one chosen is that for which the

projection of its distance vector r0 onto the basal plane is

closest to being perpendicular to an edge of the basal hexagon.

In order to standardize the individual deviations from this
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Figure 2
Illustration of the section of a layer of centred hexagons as it was used in a
preselection algorithm (see text). Central point: cross; basic hexagon:
filled black; centres of additional hexagons: shaded.

Figure 3
Illustration of the definition of variables and norms used in categorizing
the shift of layers. Open circles: centres in layer 0 (basal layer); shaded
circles: centres in adjacent layer (layer 1); jr0j: shift of adjacent layer
versus basal layer; ’1, ’2: angles defining the direction of the shift vector
r0; js j: distance between the centres of two adjacent hexagons in the basal
layer.



ideal pattern (distance vector r0 pointing to the centre of the

edge, see Fig. 3), the deviation � is defined as

� ¼
�
2 � ’1

�
2

����
���� ¼

�
2 � ’2

�
2

����
���� with � ¼ ’1 þ ’2:

With this definition, the deviation is scaled to 0 � � � 1, since

if ’1 ¼ ’2 then � ¼ 0 and if ’1 ¼ 60�, ’2 ¼ 0� then � ¼ 1.

In order to scale the length of the shift, the distance jsj

between two relevant neighbouring centred six-membered

cycles (Fig. 3) is taken as the unit distance. This means e.g. that

for an ideal hexagonal or cubic close-packed structure (h.c.p.

or f.c.c.) the shift amounts to jr0j ¼
1
3, while for an ideal b.c.c.-

type packing the shift amounts to jr0j ¼
1
2. For the specific

situation of an AAA stacking sequence, i.e. a situation in which

the centres of the hexagons of adjacent layers lay exactly on

top of each other with respect to the plane normal (i.e.

jr0j ¼ 0), � is set to 0.

The stacking pattern of layers of centred hexagons was

analysed in order to find all structures with equal or alter-

nating inter-layer distances. This subset was analysed for the

length of the shift vector jrnj being an integer multiple of jr0j

(Fig. 3), the shift vector determined for the shift of the basal

layer versus the adjacent layer (see above; n counts the layers:

n ¼ 0: basal layer; n> 0: layers above; n< 0: layers below).

Two categories were found according to

rn ¼ ð�1Þjnj � r0

(alternating direction of shifts, stacking sequence AB) and

rn ¼
ðnþ 1Þ � r0 : n � 0

n � r0 : n< 0

�

(constant direction of shifts, stacking sequences AA, AB,

ABC, ABCD,...).

The first category comprises structures with a packing

pattern characteristic of hexagonal close packing. The second

category contains f.c.c.-type packings as a subset (jr0j ¼
1
3).

B.c.c.-type packings are sorted into both categories at the same

time: the repetitive pattern is AB, taking into account that a

shift of jr j ¼ 1; 2; :::, reached each second layer, is equivalent

to a shift of jr j ¼ 0.

2.6. Molecular shape descriptor

It is the ultimate goal of a packing analysis to find rules

which allow the correlation of the observed packing pattern to

molecular properties. One of the most relevant properties of a

molecule is its shape. For an analysis of the influence of

molecular shape on the kind of packing of molecules within a

crystal, it is necessary to describe the characteristics of the

shape in a general way. A very approximate way to do so is to

use the ellipsoid of second moments as a descriptor. Two

numbers referring to the two aspect ratios m=l and s=m (with l,

m and s corresponding to the roots of the eigenvalues in

descending order, that is the lengths of the eigenaxes) suffice

to characterize the shape this way. This kind of shape

descriptor is used throughout this article.

In order to visualize properties of the dataset with respect

to molecular shape, the frequency of occurrence of this

property with respect to molecular shape has to be analysed.

To smooth stochastic variances, the frequency was calculated

for a unit area around each point in an m=l versus s=m

diagram. The unit area was chosen as a circle of radius t

around the point considered and the hits within this area were

weighted according to their distance d from this point. The

following truncated parabolic weight function f ðdÞ was chosen

f ðdÞ ¼
1� ð 1

t dÞ
2 : d< t

0 : d � t

�
:

For the plots in this paper, t was chosen as 0.02.

2.7. Density of packing

To calculate the volume of individual molecules, the algo-

rithm implemented in the quantum chemical program

GAUSSIAN (Frisch et al., 2003) was used. Volumes were

calculated based on SCF calculations (the standard basis sets

sto-3g or if not available for an atom within the molecule, the

basis set Lanl2DZ was applied) using the c.p.c.m. model

(Barone & Cossi, 1998) with krypton as the ‘solvent’ in the

solvent-excluding surface technique. Bondi’s atomic radii

(Bondi, 1964) as implemented in GAUSSIAN were used.2

Molecules with an odd count of electrons were calculated in

the doublet state.
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Figure 4
Graphic representation of a random selection of centred hexagons as
present in the 36 678 structures which were categorized as being made up
from layers of centred hexagons. The graphs are scaled to approximately
equal size in order to make them comparable. Each hexagon is shown in
two projections, one onto its plane (top) and one perpendicular to it
(bottom). It is evident that planarity (each second line in the graph) was
used as a stringent criterion in the filter as applied.

2 The standard notation for the volume calculation with GAUSSIAN hence
implies: "\#P RHF/sto-3g scrf = (solvent = krypton,cpcm,read)" with "surface
= ses" and "radii = bondi".



3. Results

3.1. Layers of centred hexagons in molecular packing

The most surprising result of the analysis of the dataset is

that of a total of 112 993 structures, a set comprising 36 678

structures [32.5% of the total, subset named HL (hexagon

layers) hereafter] may be described as composed of parallel

layers made up from planar centred hexagons. This result is

surprising in so far as the filter used to extract layers of centred

hexagons is quite terse. Fig. 4 shows a random selection of

seven point arrangements which were ranked by the program

as planar centred hexagons using the criteria given in x2.2. It is

seen at the same time that planarity was used as an especially

important criterion.

If the subset of structures made up by stacking parallel

layers with each layer made up by centred hexagons is

analysed for space-group distribution, it is evident that

compounds crystallizing in some of the less common space

groups (right hand side of Fig. 5) have a high tendency to form

layers of centred hexagons (up to 80% in P1, C2=m, Cmca,

yellow bars, scale on the right). Amongst the more common

space groups, P�11 and C2=c present a chance of around 50%. In

the most common space group P21=c, almost 30% of the

structures fit to the selected pattern (see Fig. 5).

It is worth while to note that the rather common space

group P212121, for which Kitaigorodskii (1979) had derived a

high probability of close packing by analysis of space-group

symmetry, has a rather low probability of below 5% to form

such layers. The absolute number of structures conforming to

the selection pattern has of course to account for the absolute

number of structures per space group (Fig. 5, blue bars, scale

on the left).

For the subset of structures which may be described as

composed of layers of centred hexagons with equal or alter-

nating inter-layer distances and shift vectors (19 751 struc-

tures; this subset, named HLsub hereafter, comprises 17.5% of

the complete dataset and 53.8% of the dataset HL of layered

structures; see x2.5), it is found that the direction of the shift

(see Fig. 3) is most probably towards the centre of the adjacent

hexagon (� ¼ 0, Fig. 3).

A graph illustrating the distribution of the lengths and

directions of the shift vectors of subset HLsub is given in Fig.

6. The figure shows this distribution in a diagram with r � sin ’
and r � cos ’ as the horizontal and perpendicular axes. ’ itself

is calculated from � (see x2.5) by linearly scaling � 0; 1½ � to

’ 0�; 30�½ �. The diagram is necessarily symmetric about y ¼ 0

since a stack of layers may be seen as well from the top as from

the bottom with an associated change of the sign of ’. The

frequency with which the values of r0 and ’ occur was eval-
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Figure 5
Histographic illustration of the frequency of the occurrence of the 25 most frequent space groups (blue bars, scale on the left). Percentage of structures
made up from layers of centred hexagons (HL) for each of the 25 space groups (yellow bars, scale on the right).



uated within a rectangular net in an r versus ’ diagram (100

steps for 0 � r � 0:52 and 45 steps for 0 � � � 1, see x2.5 and

Fig. 3 for the definition of r, ’ and �). These values are

presented in a colour-coded form in Fig. 6 at the corre-

sponding location of x ¼ r � cos ’ and y ¼ r � sin ’.

An important feature of Fig. 6 is that it shows that a shift

direction of � ¼ 0 is by far preferred. For this direction of shift,

there is a high probability that the length of the shift of jr0j is
1
2,

which places the centre of the hexagon of the adjacent layer

just above the centre of the edge of the basic hexagon (see Fig.

3). There is also a high probability for a shift of jr0j ¼
1
3 (see

Fig. 6) which, in the ideal case, places the centre of a hexagon

of the adjacent layer just on top of the midpoint of the equi-

lateral triangle of the basic hexagon. The distribution of the

lengths of the shifts at around y ¼ 0 (� � 0:1) is more easily

visualized in Fig. 7, which shows the length of the shift vector

versus the number of structures in the sector � � 0:1 of Fig. 6.

It is apparent that jr0j ¼
1
2 is greatly preferred, followed by

jr0j ¼
1
3. The diagram also tends to indicate that shift vectors of

lengths 0 and 1
4 are relatively probable as well. A shift vector of

jr0j ¼
1
2 corresponds to an AB sequence of layers, as present in

b.c.c.-type lattices.

A shift vector of jr0j ¼
1
3 is characteristic of the AB sequence

of a h.c.p.-type lattice as well as for the ABC sequence of an
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Figure 8
Distribution of molecular shapes for the basis data set (112 993
structures). m=l, s=m: aspect ratios of shape ellipsoid. The frequency of
molecules with a specific shape ellipsoid was analysed in a grating of
1000 steps in each direction. The number of structures per point was
calulated as a weighted sum of hits in a circular area around each point
(see x2.6). The frequency is shown by the colour code, as shown at the
bottom of the diagram. For frequencies of less than 10 (unweighted
number of hits) the colour was set to white. Iso-frequency lines are shown
at the border of individual areas. As an overlay, the shape of the
ellipsoids, which characterize each point in the diagram, are shown for
selected aspect ratios.

Figure 6
Distribution of shift vectors with respect to their orientation and length
(’ and r0, see Fig. 3). x and y refer to a polar coordinate system with
x ¼ r � sin ’ and y ¼ r � cos ’. Frequency sampling was carried out for a
grating with 100 steps for r and 45 steps for ’ = 30�. The number of
structures found in each interval area is represented by a colour code
(logarithmic scale). For less than two structures per area, the colour was
set to white.

Figure 7
Histographic projection of the sector of Fig. 6 along y ¼ 0 ð� � 0:1Þ. The
predominance of shift lengths around 0, 1

3 and 1
2 is evident. (NB The

perpendicular scale is discontinuous.)



f.c.c.-type lattice. A shift vector of jr0j ¼
1
4 indicates a stacking

sequence of ABCD, while a shift vector of 0 represents the

sequence AAA with the layers directly on top of each other.

3.2. Distribution of molecular shapes

The dataset of 112 993 structures, i.e. all structures with just

one residue per asymmetric unit (i.e. just one type of molecule

in the crystal, see x2.1), was analysed with respect to the

distribution of molecular shapes. The shapes themselves were

roughly approximated by ellipsoids of second moments

(ellipsoids of moments of inertia with equal weights assigned

to all atoms, including H atoms if present in the list of coor-

dinates; see x2.6). The distribution is shown in a diagram

scaled by the two aspect ratios of the ellipsoids (Fig. 8). To

illustrate how these aspect ratios relate to the shape of the

ellipsoids, these shapes are overlaid in a semi-transparent

manner on the basic diagram at their respective aspect ratios.

The diagram itself shows that the compounds that chemists

have prepared and which have been structurally characterized

tend to have a preferred shape around m=l ¼ s=m ’ 0:8. The

frequency of shapes decreases in an almost radially symmetric

way with increasing distance from this preferred aspect ratio.

No definitive explanation for this finding can be given. It might

be due to the shape properties of the families of compounds in

which chemists have so far been interested; it might also

mirror the differing propensity of different shapes to allow the

formation of high quality crystals.

It is worth noting that a numerical simulation as well as

experimental modelling (using candies of ellipsoidal shape as

models) have shown that ellipsoids with both aspect ratios

around 0.8 allow for a closer packing than all the other

ellipsoidal shapes studied (Donev et al., 2004).

For the subset HLsub, the iso-frequency lines show a

grossly similar distribution of molecular shapes. In the corre-

sponding diagram (Fig. 9), the iso-frequency lines pertaining

to this subset of data are overlaid on a colour-coded graph.

The colours in this graph indicate the percentage of structures

which show the selected pattern of packing relative to the total

number of structures at each point. Red colours correspond to

a high percentage. It is obvious that the red-coloured areas

concentrate in four regions. There are small/narrow red bands

along the m=l ’ 1 and

s=m ’ 1 axes, respectively,

of the diagram. These

locations correspond to

shape ellipsoids with

rotational symmetry. A

concentration of struc-

tures with the basic

packing patterns f.c.c.,

h.c.p. and b.c.c., which

necessarily contain layers

of centred hexagons, in

these regions of the

diagram has already been

documented for a small

subset of the CSD. The

rotational symmetry of the

shape ellipsoids has been

invoked as the most
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Figure 10
Packing of rod-type shape molecules. SAFPIY01 (s/m = 0.596, m/l = 0.295) as an example. The centres of the rods
form layers of centred hexagons. The rods are tilted relative to the plane normal.

Figure 9
Frequency of structures of dataset HLsub with respect to the shapes of
their ellipsoids of second moments. The frequency (colour code at the
bottom of the diagram) is given as the percentage of structures showing
this type of packing with respect to the total number of structures in the
data set in each area. Iso-frequency lines are shown for 5 (black), 20 (dark
blue) and 35 (light blue) weighted hits per unit area (see x2.6). The colour
for areas with less than 5 unweighted hits was set to white.



probable explanation of this finding (Reichling & Huttner,

2000). The present analysis shows that the findings made on a

small subset are also characteristic of a complete subset of the

CSD, containing all structures with one ‘residue’.

Another region with an accumulation of red areas is

apparent in the left-hand side of the diagram around

m=l ’ 0:25 over the whole range of s=m. With m=l in this

range, the molecules are rather elongated. The fact that the

centres of these molecules somehow prefer an arrangement in

centred hexagonal layers should be correlated with the rod-

type shape of these molecules. The fact that centred hexagonal

layers are formed independent of the aspect ratios s=m is

explained by the orientation of the molecules relative to each

other: ellipsoids of adjacent lines of the layer are rotated

relative to each other so as to produce a herring-bone

appearance of the projection (see Fig. 10).

The fourth region with a high probability of finding struc-

tures conforming to the search pattern is located at the bottom

of the diagram at s=m ’ 0 over the whole range of m=l. The

molecules are hence close to planar and chemically they are

preferentially aromatic molecules or square-planar complexes.

For these flat molecules, the formation of layers of centred

hexagons is generally achieved in the following way: the

molecular planes tend to be parallel to the normal of the layer

with different degrees of tilting allowed. The planes of mole-

cules along neighbouring lines of the pattern of centred

hexagons are rotated relative to each other around the normal

to the layer plane by angles close to 90� (Kitaigorodskii, 1979).

Even though the shape descriptor used is very approximate,

some correlations between the shape and the kind of packing

are obvious with this descriptor. It is remarkable that the

predictions based on this descriptor [forecasting an arrange-

ment of the centres of molecules in a pattern of centred

hexagons with equal or alternating inter-layer distances and

constant or alternating shift vectors (dataset HLsub)] may

well have a probability of above 35% to be true.3 It is also

remarkable that there is an even higher probability (up to

more than 90%) that a given molecule will not pack in this

type of pattern.

3.3. Density of packing

The volume of all the molecules was determined using the

same algorithm (see x2.7). The solvent-excluded volume was

used throughout. The distribution of packing coefficients as
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Figure 12
Distribution of packing coefficients for the dataset HLsub. The colour
code used for the individual ranges of packing coefficients is given at the
bottom of the diagram. It is the same colour code as used in Fig. 11. For
less than 5 contributors per unit area, the colour was set to white. Iso-
frequency lines indicate the weighted number of structures per unit area
(see x2.6); black: 5; dark blue: 20; light blue: 35.

Figure 11
Distribution of packing coefficients with respect to the shape of molecules
as characterized by the aspect ratios of their ellipsoid of second moments.
The colour code used for a specific range of packing coefficients is shown
at the bottom of the diagram. For less than 10 structures per unit area, the
colour was set to white. The diagram refers to the basis dataset of 112 993
structures. Iso-frequency lines relate to the weighted number of data per
unit area (analogous to Fig. 8, see x2.6). They are given for values of 40,
145 and 250 in an outside in sequence (see also Fig. 8).

3 In the dataset used, structures represented more than once were not
eliminated. Fig. 9 is hence biased by counting these structures several times,
but we have established that eliminating such multiplicates in specific
prominent areas does not significantly change the appearance of the diagram.



calculated on this basis is shown in Fig. 11 for the whole

dataset of 112 993 structures. The colour coding in Fig. 11

represents the average packing coefficient in an area around

each point in the diagram. This average was calculated as a

weighted average per unit area by the same approach as

described in x2.6 for finding the probability of regular stacking

of layers of centred hexagons (Fig. 9). The iso-frequency lines

indicate the number of structures in a given area.

It is evident that high packing coefficients (red colour) are

especially probable around aspect ratios of m=l and s=m ’ 0:8
(Donev et al., 2004). It is well known that the upper limit for

the packing coefficient of spheres is 0.74 (Sloane, 1998). The
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Figure 13
Plots showing the scatter of specific stacking sequences. (a) represents the distribution of structures with an AA stacking sequence with respect to the
aspect ratio of the shape ellipsoids of the respective molecules. (b) shows analogous data for the stacking sequence AB corresponding to an h.c.p.-type
arrangement. (c) presents analogous data for an ABC stacking sequence (f.c.c.-type arrangement). (d) relates to the distribution of an AB stacking
sequence in b.c.c. mode.



packing coefficients of real molecules may well be higher

(general area of the diagram, see also Fig. 8) and packing of

molecules characterized by second-moment ellipsoids without

rotational symmetry (at axes m=l and s=m) tend to pack with

higher packing coefficients than those corresponding to rota-

tionally symmetric ellipsoids (see Fig. 11).

If the subset of structures for which the regular packing of

layers of centerd hexagons was found (HLsub with 19 751

structures, see x3.1) is analysed the same way for the distri-

bution of packing coefficients, the diagram shown in Fig. 12 is

obtained. In comparing both diagrams (Figs. 11 and 12) it is

apparent that the density of packing is higher in the mean for

this subset than for the whole set of data. Is is tempting to

hypothesize that the high frequency of occurrence of struc-

tures containing stacked layers of centred hexagons is corre-

lated with the high packing coefficient induced by this kind of

arrangement.

3.4. Stacking sequence

From the set of structures corresponding to an arrangement

of equidistant layers of centred hexagons (HLsub with 19 751

structures, see x3.1) only a small percentage conforms almost

exactly to the special type

of stacking characteristic

of h.c.p.-, f.c.c.- or b.c.c.-

type packings. Even if the

distance between indivi-

dual layers is not used as a

classifing criterion and if

hence only the shift vector

and its repetition pattern

(see x2.5) are taken into

account, the number of

structures conforming to

these nevertheless still

quite tight criteria is small.

There are 116 structures

which show stacking with

a shift vector of 0, stacking

sequence AA (Fig. 13a).

There are 175 structures

which show an AB pattern

of stacking with a shift

vector corresponding to

jr0j ¼
1
3; � ¼ 0 (0.325 �

jr0j � 0:345, � � 0:1; see

x3.1, Fig. 13b). An ABC

pattern is found for 540

structures (0.33 � jr0j �

0.35, � � 0:1; Fig. 13c).

There are 1534 structures

which show a stacking

pattern characteristic of

b.c.c.-type structures

corresponding to a shift

vector of jr0j ¼
1
2; � ¼ 0

(0.495 � jr0j � 0:5, � � 0:1; Fig. 13d).

A high probability of some of these types of stacking is

observed at the borders of the corresponding diagrams, that is

at m=l ’ 1 or s=m ’ 1, respectively. The second-moment

ellipsoids characterizing the points along these lines have

rotational symmetry. The preponderance of b.c.c.-type lattices

(see Fig. 13d) might be correlated with the fact that in this type

of packing there are 14 nearest neighbours instead of only 12

in an f.c.c.- or h.c.p.-type lattice (Peresypkina & Blatov, 1999,

2000).

To illustrate some of the various possibilities of molecules

which give rise to one or the other of these special stacking

sequences, the layers found in two different modifications of

acetylene are shown in Fig. 14. In both cases, the stacking

sequence is ABC and even the layer distance is close to the

ideal value of an f.c.c. lattice, as illustrated by the shape of the

corresponding coordination cuboctahedron shown.

4. Conclusion

An algorithm is described which allows for the automatic

retrieval of special types of molecular packing. By applying

this algorithm to 112 993 structures containing ‘one residue’
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Figure 14
Illustration of two kinds of f.c.c.-type packing of acetylene (ACETYL02 at the top, ACETYL11 at the bottom). The
left-hand side of the diagram: projection of the molecules on to the plane of centred hexagons; right-hand side:
cuboctahedron illustrating the position of the centres of molecules in adjacent layers.



stored in the CSD it is found that about a third (36 678

structures, dataset HL) of these structures show a packing

pattern made up from layers of centred hexagons stacked onto

each other. If this subset is screened for patterns made up

from layers of centred hexagons with the additional restriction

of equal or alternating inter-layer distances and shift vectors a

subset (dataset HLsub) of 19 751 structures is found to meet

these additional criteria.4

Packing coefficients are found to be somewhat higher on

average for the dataset HLsub than for the whole set of

112 993 structures. The type of packing characteristic of the

dataset HLsub appears to be correlated with the molecular

shape in a characteristic way: molecules for which the ellipsoid

of second moments (‘ellipsoid of inertia’) has rotational

symmetry show a high probability of packing this way, as do

rod-type molecules with an aspect ratio of m=l ’ 0:25 and

planar molecules (s=m ’ 0). For some combinations of m=l

and s=m, the probability that the packing of the respective

molecules conforms to the category defined for HLsub is

higher than 30%. For some other combinations, the prob-

ability that the respective molecule will not form centred

hexagonal layers is over 90%.

We are grateful to the German Science Foundation (DFG)
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4 The datasets HL, HLsub and the set of 112 993 structures that served as a
basis of the analysis are available from the IUCr electronic archives
(Reference: BM5019). Services for accessing these data are described at the
back of the journal.


